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Rigorous Spectral Analysis of the Metal-Insulator
Transition in a Limit-Periodic Potential
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One of the possible mechanisms leading to a metal-insulator transition
within a one-particle theory is based upon quantum effect in almost-peri-
odic systems. Other than the Anderson transition in a disordered system,
this transition is expected to be continuous: as the strength of the almost-
periodic potential increases, the Hausdorff dimension of the singular con-
tinuous local density of states should decrease from 1, the Hausdorff
dimension of an absolutely continuous measure, towards 0, the Hausdorff
dimension of a pure-point measure.

The purpose of this note is to exhibit an example for which the above
scheme can be proved to be correct. Using a result of Manning,(12) we
hence complete the work of Bessis et al.(4) on the limit-periodic Jacobi
matrices associated to the real Julia sets of fy(z) = z2-y, zeC and
ye [2, oo). Further examples for which a proof of a similar result should be
within reach are the Jacobi matrices associated to iterated function
systems, (10) the open question being the proof of their almost periodicity.

The implications of the above spectral metal-insulator transition for the
transport properties of the system are based on Guarneri's inequality.(7,9,1)
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We consider the limit-periodic Jacobi matrices associated with the real Julia
sets of f A (z ) = z2 —A for which Ae[2 , oo) can be seen as the strength of the
limit-periodic coefficients. The typical local spectral exponent of their spectral
measures is shown to be a harmonic function in A decreasing logarithmically
from 1 to 0.
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It states that the diffusion exponents aq, q>0, defined by the time asymp-
totic behavior of the moments of the position operator by < y|| X( t) |q | y > ~
tqaq, are bounded below by the Hausdorff dimension of the local density of
states, notably the spectral measure of y. For a more detailed characteriza-
tion of the diffusion exponents, not only the Hausdorff dimension of the
spectral measure intervenes, but also their multifractal properties.(11)

However, we expect the diffusion exponents also to converge to zero in the
limit A-> oo. We finally note that a diffusion exponent a2 different from 1
leads to anomalies in Drude's formula.(15)

We first recall from ref. 4 some facts about the Jacobi matrices HK

associated to fA, Ae[2 , oo). Let (|n>)neN be a basis of the Hilbert space
l2(N), then Hy is given by

where the sequence (tn) neN in [0, /A] is calculated from the recursion
relations

with initial condition t0 = 0. This sequence (tn)neN is limit-periodic. The
spectrum of Hn is the Julia set JA of fA, namely the set of all z e C such that
the sequence (f k y ( z ) ) k e N is bounded.

Let uy denote the spectral measure of HA associated to the state |0>.
Its Hausdorff dimension is defined by the infimum of the Hausdorff dimen-
sions of all Borel subsets ScR satisfying uA(s) = l.(16) According to Rogers'
and Taylor's theorem,(14) it is also equal to the uA -essential supremum of
all spectral exponents auy(E) given by

For more details on the fractal analysis of the spectral measure uA, we refer
to refs. 9, 13, and 15. We have now introduced all the notions necessary in
order to state the result.

Theorem. The Hausdorff dimension dimH(uA) of the spectral
measure uA is a harmonic function of y e [2, oo). For y = 2, it is equal to 1,
and in the limit y -> oo, one has dimH(uy) = log(4)/(log(A) + o( 1)). Further-
more, the spectral exponents a un(E) are uy -almost surely constant and
equal to dimH(ul).

As shown in refs. 2 and 4, the spectral measure uy is nothing but
the invariant, ergodic, maximal entropy measure of the dynamical system
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(Jy , fy). The proof of the theorem is therefore a direct application of a
result of A. Manning(12) linking the Hausdorff dimension of the measure uy

to the quotient of measure-theoretic entropy and Lyapunov exponents of
the dynamical system ( J y , fA) with respect to uA. This is an example of an
extension of Pesin's equality to singular measures. Let us remark that, on
the level of the Jacobi matrices HA, the dynamics turns out to be an exact
renormalization procedure.(4,2) More precisely, if D is the dilation operator
by a factor 2 (that is, D* |n> = |2n>, then one has HnD = Df y (H n ) .

Recently, Jitomirskaya and Last have extended the Gilbert-Pearson
theory of subordinacy in order to develop a tool for computing spectral
exponents.(8) The above dynamical system approach is complementary and
it may turn out to be more fruitful for the explicit calculation of the dimen-
sion of the spectrum also for other examples.

Note that the last statement in the theorem does not exclude that there
are energies for which the spectral exponent is not equal to the Hausdorff
dimension of the measure. For example, if E is equal to the band edge
(1 + /l +4A)/2 or any of its preimages (which form a dense subset of JA),
the spectral exponent was calculated explicitly by Bessis et al.(3) and is
equal to

For small A, these spectral exponents are considerably smaller than the
typical one (compare Fig. 1) and are due to van Hove singularities. For
example, in the case A = 2, the spectral measure is absolutely continuous on
[-2,2] with density 1 / ( n ^/4-E2) which has singularities at the band
edges with exponent 1/2.

We conclude by an outline of the proof. The key point is Manning's
volume lemma*12) which states

where /^(/O is the dynamical entropy of/, and /^ = \ d/u^(E) log( \2E\) its
Lyapunov exponent (both with respect to ^A). Using symbolic dynamics,'5'
one verifies that h^fj = log(2). Now recall Brolin's weak limit representa-
tion of the measure n^:(S)
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Fig. 1. Upper curve: Hausdorff dimension of the spectral measure n^ as a function of 1
(calculated numerically using a weighted Bernoulli process choosing the branches of the
inverse map of/j); lower curve: spectral exponent at the band edge and its preimages as given
in (2).

Now, by Brolin's calculation,(5)

In fact, the roots of the polynomial f * ( z ) — z0 are exactly the energies
appearing in the above product. Thus the Lyapunov exponent is equal to
log(2) + log(|^(0)|) with

where we have used that 0 is in the attraction basin of the superattracting
fixed point oo so that z0 can be suppressed. Now (4) is exactly the Bottcher

which is independent of z0 e C excluding one exceptional point. Hence the
Lyapunov exponent is given by



which proves the next statement of the theorem.
Finally according to ref. 17, the spectral exponents can be calculated

from the Green's function of the spectral measure /IA by means of the for-
mula 3m G(E — is) ~£°W£ )~1 as e-»0. G satisfies the functional equation
G(z) = zG(z2 -1) because for the resolvant of H^ the renormalization equa-
tion Z)l/(z-//JZ)* = z/(z2-/l-///t) holds.(2) From the functional equa-
tion it is now possible to verify that a^(£') = a^(//l(£')) for any £eR and
A>2 . Because the measure ^ is ergodic and the mapping E\-xx^, (E) is
borelian,(15) it follows that the spectral exponents are /^ -almost surely
constant.
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